3-1

d

n

ris

ers

ber

h

Study Guide and Intervention

Representing Relations

Represent Relations A **relation** is a set of ordered pairs. A relation can be represented by a set of ordered pairs, a table, a graph, or a **mapping**. A mapping illustrates how each element of the domain is paired with an element in the range.

Example 1 Express the relation $\{(1, 1), (0, 2), (3, -2)\}$ as a table, a graph, and a mapping. State the domain and range of the relation.

x	У
1	1
0	2
3	-2

The domain for this relation is $\{0, 1, 3\}$. The range for this relation is $\{-2, 1, 2\}$.

Example 2 A person playing racquetball uses 4 calories per hour for every pound he or she weighs.

- a. Make a table to show the relation between weight and calories burned in one hour for people weighing 100, 110, 120, and 130 pounds. Source: The Math Teacher's Book of Lists
- x
 y

 100
 400

 110
 440

 120
 480

 130
 520
- b. Give the domain and range. domain: {100, 110, 120, 130} range: {400, 440, 480, 520}
- c. Graph the relation.

Exercises

1. Express the relation $\{(-2, -1), (3, 3), (4, 3)\}$ as a table, a graph, and a mapping. Then determine the domain and range.

X	. У

2. The temperature in a house drops 2° for every hour the air conditioner is on between the hours of 6 A.M. and 11 A.M. Make a graph to show the relationship between time and temperature if the temperature at 6 A.M. was 82°F.

Study Guide and Intervention (continued)

Representing Relations

Inverse Relations The inverse of any relation is obtained by switching the coordinates in each ordered pair.

Example Express the relation shown in the mapping as a set of ordered pairs. Then write the inverse of the relation.

Relation: {(6, 5), (2, 3), (1, 4), (0, 3)} Inverse: {(5, 6), (3, 2), (4, 1), (3, 0)}

Exercises

Express the relation shown in each table, mapping, or graph as a set of ordered pairs. Then write the inverse of each relation.

1

х	У
-2	4
-1	3
2	1
4	5

3.

х	У
-3	5
-2	-1
1	0
2	4

4.

5.

Study Guide and Intervention

Representing Functions

Identify Functions Relations in which each element of the domain is paired with exactly one element of the range are called functions.

Example 1 Determine whether the relation $\{(6, -3),$ (4, 1), (7, -2), (-3, 1) is a function. Explain.

Since each element of the domain is paired with exactly one element of the range, this relation is a function.

Example 2 Determine whether 3x - y = 6is a function.

Since the equation is in the form Ax + By = C, the graph of the equation will be a line, as shown at the right.

If you draw a vertical line through each value of x, the vertical line passes through just one point of the graph. Thus, the line represents a function.

Exercises

Determine whether each relation is a function.

1.

3.

4.

6.

7. {(4, 2), (2, 3), (6, 1)}

8.
$$\{(-3, -3), (-3, 4), (-2, 4)\}$$
 9. $\{(-1, 0), (1, 0)\}$

9.
$$\{(-1, 0), (1, 0)\}$$

Skills Practice

Representing Functions

Determine whether each relation is a function.

1.

2.

3.

4.

X	У
4	- 5
1	-10
0	9
1	7
9	1

5.

1	X	У
	2	7
	5	-3
-	3	5
-	-4	2
	5	2

6.	X	У
-	3	7
	1	1
	1	. 0
	3	5
	7	3

7.
$$\{(2, 5), (4, -2), (3, 3), (5, 4), (-2, 5)\}$$

8.
$$\{(6, -1), (-4, 2), (5, 2), (4, 6), (6, 5)\}$$

9.
$$y = 2x - 5$$

10.
$$y = 11$$

13.

Determine whether each relation is a function.

1.

2.

x	У
1	5
-4	3
7	6
1	-2

3.

$$4. \{(1, 4), (2, -2), (3, -6), (-6, 3), (-3, 6)\}$$
 $5. \{(6, -4), (2, -4), (-4, 2), (4, 6), (2, 6)\}$